Какова вероятность, что случайно брошенная точка попадет в круг (событие \(A\))?
\[ \mathbb{P}(A) = \lim_{N \rightarrow \infty} \frac{n}{N} = \frac{S_\text{circle}}{S_\text{square}} \]
\[ \mathbb{P}(A) = \frac{S_\text{circle}}{S_\text{square}} = \frac{\pi r^2}{a^2} = \frac{\pi \big(\frac{1}{2}a\big)^2}{a^2} = \frac{1}{4}\pi \approx 0.785 \]
\[ \mathbb{P}(A) = \frac{V_\text{ball}}{V_\text{cube}} = \frac{\frac{4}{3}\pi r^3}{a^3} = \frac{\frac{4}{3}\pi \big(\frac{1}{2}a\big)^3}{a^3} \approx 0.523 \]
\[ \begin{split} k = 2n &, V = \frac{\pi^2}{n!}r^{2n} \\ k = 2n+1 &, V = \frac{2 \cdot (2\pi)^n}{(2n+1)!!} r^{2n+1} \end{split} \]
Что делать? Снижать размерность.
и т.д.
\[ \begin{split} &\mathbf{Y}_1 = a_{11} \mathbf{X}_1 + a_{12} \mathbf{X}_2 + \dots + a_{1k} \mathbf{X}_k \\ &\text{var}(\mathbf{Y}_1) \to \max \\ &\mathbf{a}_1 \mathbf{a}_1^\top = 1, \, \mathbf{a}_1 = \begin{pmatrix} a_{11} & a_{12} \dots a_{1k} \end{pmatrix} \end{split} \]
\[ \begin{split} &\mathbf{Y}_2 = a_{21} \mathbf{X}_1 + a_{22} \mathbf{X}_2 + \dots + a_{2k} \mathbf{X}_k \\ &\text{var}(\mathbf{Y}_2) \to \max \\ &\mathbf{a}_2 \mathbf{a}_2^\top = 1, \, \mathbf{a}_2 = \begin{pmatrix} a_{21} & a_{22} \dots a_{2k} \end{pmatrix} \\ &\text{cor}(\mathbf{Y}_2, \mathbf{Y}_1) = 0 \end{split} \]
\[ \begin{split} &\mathbf{Y}_3 = a_{31} \mathbf{X}_1 + a_{32} \mathbf{X}_2 + \dots + a_{3k} \mathbf{X}_k \\ &\text{var}(\mathbf{Y}_3) \to \max \\ &\mathbf{a}_3 \mathbf{a}_3^\top = 1, \, \mathbf{a}_3 = \begin{pmatrix} a_{31} & a_{32} \dots a_{3k} \end{pmatrix} \\ &\text{cor}(\mathbf{Y}_3, \mathbf{Y}_1) = 0, \, \text{cor}(\mathbf{Y}_2, \mathbf{Y}_1) = 0 \end{split} \]
\[ \begin{split} &\mathbf{Y}_k = a_{k1} \mathbf{X}_1 + a_{k2} \mathbf{X}_2 + \dots + a_{kk} \mathbf{X}_k \\ &\text{var}(\mathbf{Y}_k) \to \max \\ &\mathbf{a}_k \mathbf{a}_k^\top = 1, \, \mathbf{a}_k = \begin{pmatrix} a_{k1} & a_{k2} \dots a_{kk} \end{pmatrix} \\ &\text{cor}(\mathbf{Y}_k, \mathbf{Y}_i) = 0, \, i = 1, 2, \ldots, k \end{split} \]
PC1 | PC2 | PC3 | … | PCk | |
---|---|---|---|---|---|
Standard Deviation | 2.214 | 1.501 | 0.622 | … | 0.003 |
Proportion of Variance | 0.596 | 0.327 | 0.059 | … | 0.000 |
Cumulative Proportion | 0.596 | 0.923 | 0.982 | … | 1.000 |
PC1 | PC2 | PC3 | … | PCk | |
---|---|---|---|---|---|
X1 | 0.06 | −0.62 | 0.42 | … | −0.42 |
X2 | 0.38 | −0.27 | −0.74 | … | −0.27 |
X3 | 0.44 | −0.24 | 0.19 | … | −0.38 |
… | … | … | … | … | −0.05 |
Xk | 0.24 | 0.57 | −0.11 | … | −0.77 |
\[ \begin{split} &\mathbf{X}_i = a_{i1} \mathbf{F}_1 + a_{i2} \mathbf{F}_2 + \dots + a_{ip} \mathbf{F}_p + \mathbf{U}_i, \, i = 1, 2, \ldots, k \\ & \mathbf{X} = \mathbf{A} \mathbf{F} + \mathbf{U}, \\ & \mathbf{A} = (a_{ij}), \, i = 1,2,\ldots,k, \, j = 1,2,\dots,p \\ & \mathbf{U}^\top = \pmatrix{\mathbf{U}_1 & \mathbf{U}_2 & \dots & \mathbf{U}_k} \end{split} \]
\[ \text{var}\mathbf{X}_i = \sum_{j=1}^p a^2_{ij} + \text{var}\mathbf{U}_i \]
Антон Ангельгардт
WLM 2023